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Abstract – We propose a novel measure to assess the presence of meso-scale structures in complex
networks. This measure is based on the identification of regular patterns in the adjacency matrix
of the network, and on the calculation of the quantity of information lost when pairs of nodes are
iteratively merged. We show how this measure is able to quantify several meso-scale structures,
like the presence of modularity, bipartite and core-periphery configurations, or motifs. Results
corresponding to a large set of real networks are used to validate its ability to detect non-trivial
topological patterns.

editor’s  choice Copyright c⃝ EPLA, 2014

Introduction. – In the last decade, complex network
theory [1,2] has unveiled several topological character-
istics that are obiquitous among many real-world sys-
tems. Initially the attention was directed towards two
global, macro-scale network structures, i.e. small-world
and scale-free topologies. But soon it was found that
complex networks typically possess non-trivial patterns of
connectivity at a meso-scale level, i.e. between micro- and
macroscopical scales [3], which have been shown to have
an important impact on, for instance, spreading [4,5] and
synchronization [6,7] processes.

Among the different types of meso-scale structures
that have been described, one has received most of the
attention: communities, that is, the organization of nodes
in clusters, with many links connecting nodes belong-
ing to the same cluster and comparatively few joining
nodes of different clusters [8–10]. The pervasiveness of
a community structure can, in principle, be characterized
by quantifying the network modularity [11]. Yet, this met-
ric suffers from two main drawbacks: first of all, it is a
posteriori metric, in that it can only be calculated after
a community structure has been defined. Furthermore,
modularity is not robust to the presence of different topo-
logical scales, e.g. when one community is much smaller

than the others [12,13]. While the concept of modularity
can be generalized to include other meso-scale structures,
as, for instance, bipartite networks [14], it still inherits the
previously discussed drawbacks. Other types of meso-scale
structures, important to understand the structure and dy-
namics of real networks, include motifs, i.e. sub-graphs
that recur within a network with a frequency higher than
expected in random ensembles [15], and core-periphery,
composed of a densely connected inner core and a set of
peripherical nodes sparsely connected with the core [16].

In this letter, we address the following question: is it
possible to define a single metric able to detect the pres-
ence of different kinds of meso-scale structures? We pro-
pose a novel metric, called Information Content, which is
simultaneously i) capable of detecting generic regularities
in the adjacency matrix of a network, ii) a priori met-
ric, i.e. not requiring any previous computation like com-
munity detection, and iii) robust to different topological
scales.

The guiding hypothesis here is that important meso-
scale structures are associated with regularities in the cor-
responding adjacency matrix. For instance, in the simplest
case of a network with a perfect modular structure, nodes
connect to all peers belonging to the same community: the
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resulting adjacency matrix is composed of four blocks, two
containing only ones, two only zeros (see eq. (5) below).
In this case, erasing nodes within one community causes
no loss of information, as their connections are equivalent;
thus, measuring the information lost when pairs of nodes
are merged can be used as a way of detecting such kind of
regularities —and hence meso-scale structures.

Given an initial network, the proposed algorithm iden-
tifies the pair of nodes whose merging would suppose
the smallest information loss, a quantity which is a func-
tion of the number of common links to/from other nodes
shared by the pair. Once the best pair has been detected,
both nodes are merged (thus yielding a network one node
smaller), and the quantity of information I lost in the
process is calculated. When this process is iteratively
repeated, the Information Content (IC) of the network
is defined as the sum of all I’s, i.e. of all information con-
tained in the network. The lower IC, the more regular the
link arrangement, indicating the presence of meso-scale
structure.

As such, the calculation of the Information Content
can be seen as a type of network renormalization proce-
dure [17,18], characterized by two specific features. First
of all, the objective is the estimation of the quantity of
information lost in the process, while classical renormal-
ization focuses on how some properties of the system are
conserved at different scales. Furthermore, the renormal-
ization transformation is guided by information theory cri-
teria, instead of geometrical (topological) rules.

Information Content calculation. – The calcula-
tion of the Information Content starts with a network of
n nodes, which is fully defined by its adjacency matrix A,
whose elements aij are equal to one when a link exists be-
tween nodes i and j, and zero otherwise. The amount of
information that would be lost if two nodes were merged
together is first estimated for each pair of nodes k, l (with
k ̸= l). This is performed by comparing the connections
departing from and arriving at both nodes, i.e. the vec-
tors ak·, a·k, al· and a·l, and by creating a new vector
m of size 2n, representing the links that should be modi-
fied to recover the connections of node l given the connec-
tions of node k, and thus the information lost when both
nodes are merged together. In the first half of m, the i-th
element (with i ∈ [1, n]) is defined as one if aki ̸= ali,
and zero otherwise, thus accounting for different outgoing
links; the second half of m accounts for different incom-
ing links: thus mi+n (again with i ∈ [1, n]) is set to one
when aik ̸= ail, and zero otherwise. In the two extreme
situations, when two nodes either share all links or none,
m will either take all values 0 or 1, respectively.

Once the vector m is constructed, the probability of
finding an element equal to one (zero) is given by

p1 =
1
2n

2n∑

i=1

mi, (1)

p0 = 1 − p1. (2)

Fig. 1: (Color online) Example of one iteration of the Infor-
mation Content assessment process. Top left: initial network,
composed of 8 nodes arranged in two communities (respectively
composed of nodes 1–4 and 5–8). Notice that nodes 2 and 3
(in blue) share the same links. Top right: adjacency matrix of
the initial network; blue boxes highlight the four-vector of in-
coming and outgoing links for nodes 2 and 3. Bottom left: the
network after the merging process; the new node 2 (in green)
is the result of merging the old nodes 2 and 3. Bottom right:
adjacency matrix of the resulting network.

Finally, the information contained in m is assessed
through Shannon’s entropy [19]:

Ikl = 2n (−p0 log2 p0 − p1 log2 p1) . (3)

Ikl is defined in [0, 2n], being Ikl = 0 when p0 = 1
or p1 = 1, meaning that all links are, respectively, equal
or different, and Ikl = 2n when there is no correlation
between the links of nodes k and l.

Once I has been assessed for all possible pairs of nodes,
the algorithm identifies the pair whose merging will sup-
pose minimum information loss. Such pair is then merged
by deleting one of its nodes, and the original network is
transformed into a new one composed of n − 1 nodes (see
fig. 1 for an example). The whole process is then repeated
iteratively, until one single node remains.

Each merging step supposes some loss of information
(previously denoted by Ik,l): the Information Content
(IC) is given by the total amount of information lost as a
result of the merging steps leading from the initial network
to a single node. Converserly, it can be seen as the amount
of information needed to reconstruct the full topology of
the network, once it is reduced to a single node, by the
merging process.

Two aspects of this metric should be clarified. Firstly,
the information included in IC is not complete, as for
instance at each step it would be necessary to track which
pair of nodes has been merged: yet, the quantity of infor-
mation required for this is constant, as does not depend on
the topology of the network, and is thus discarded. Sec-
ondly, the Shannon entropy only provides a lower bound
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Fig. 2: (Color online) Modularity vs. ICnorm. Top: mod-
ularity (as calculated with Blondel’s community detection
algorithm [30]) for a network of 400 nodes organized in two
communities. The different lines represent different sizes of
the two communities: 1 : 1 (black line) two communities of 200
nodes, 1 : 2 (red line) 134 and 266 nodes, respectively, and so
forth. Bottom: normalized Information Content for the same
networks.

to the quantity of information required to encode vec-
tor m, which may be lower than what required in real
applications.

The meaning of Information Content. – For a net-
work with a completely random structure, no correlation
is expected on average between incoming and outgoing
links of any pair of nodes: thus, merging pairs of nodes
will result in a nearly maximal I, and a maximal IC is
expected. This can be used to normalize the Information
Content of any network, such that

ICnorm = IC/⟨ICrandom⟩, (4)

⟨ICrandom⟩ being the average IC obtained for an ensamble
of random networks with the same number of nodes and
links of the original graph.

If ⟨ICrandom⟩ provides the upper bound of IC, it is easy
to find regular structures that will result in a very low
Information Content. Clearly IC = 0 both for empty
(aij = 0, ∀i, j) and fully connected networks (aij = 1,
∀i, j), as merging two nodes would suppose no information
loss. More interestingly, the same will occur with a fully

Fig. 3: (Color online) ICnorm and Clustering Coefficient.
Evolution of the ICnorm as a function of the Clustering Coeffi-
cient. Black squares, red circles and blue triangles respectively
correspond to networks with mean degree of 4, 6 and 8.

modular network, such that

A =

⎡

⎢⎢⎢⎢⎣

1 1 0 0
1 1 0 0

· · ·
0 0 1 1
0 0 1 1

⎤

⎥⎥⎥⎥⎦
. (5)

The fact that all pairs of nodes have either the same
or the opposite connections, thus either p1 = 0 or p1 = 1
and Ikl = 0 for any k and l, and IC = ICnorm = 0,
can be used to assess the modularity of a network: mov-
ing from a perfectly modular to a random structure, the
ICnorm smoothly increases from zero to one. Contrary
to traditional community detection algorithms, ICnorm is
unaffected by the presence of multiple, widely separated,
scales. Both ideas are demonstrated in fig. 2, in which dif-
ferent rewiring probabilities are applied to an initial net-
work of 400 nodes, comprising two communities of differ-
ent sizes.

More generally, IC can be used to assess the presence of
any regular meso-scale structure. Consider, for instance,
a bipartite network, i.e. networks where nodes belong to
two groups, with nodes belonging to one of them being
connected only to nodes of the other. The resulting adja-
cency matrix would thus have the following structure:

A =

⎡

⎢⎢⎢⎢⎣

0 0 1 1
0 0 1 1

· · ·
1 1 0 0
1 1 0 0

⎤

⎥⎥⎥⎥⎦
. (6)

Similar results can also be obtained for networks show-
ing a core-periphery structure, with a densely connected
inner core, and a set of peripherical nodes sparsely con-
nected with the core [16]. In this case, merging nodes in
the network core will result in low information loss, with
a ICnorm lower than expected for random graphs.

The previously described meso-scale structures are
mainly defined at a global level, in that they affect the
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Fig. 4: (Color online) Phenospaces of 55 real networks. In the four panels, each network is represented by a point, whose
coordinates are given by ICnorm and a second topological metric (i.e. from left to right, top to bottom, ZScore of the maximum
node degree, slope of the exponential fit of the degree distribution, modularity and clustering coefficient). Colors encode the
type of system represented by each network: black squares for biological systems, red circles for social, and blue triangles for
other types of systems (mainly technological); the size of each point represents the size of the corresponding network.

overall topology of the network; thus, one may ask if the
proposed IC is also effective in detecting more local meso-
scales, i.e. those defined slightly above the single-node
level. To this aim, we test the measure against networks
with high global Clustering Coefficient (CC), defined as
the number of closed triplets (or triangles) over the to-
tal number of (both open and closed) triplets. Networks
were constructed following the classical method proposed
by Watts and Strogatz [20], i.e. by starting from regular
lattices of fixed degree (thus maximizing the Clustering
Coefficient) and by applying a random rewiring process.
Results are reported in fig. 3, for networks of 200 nodes
and initial degrees of 4, 6 and 8; a clear correlation can
be found between ICnorm and CC, such that the higher
the latter, the more regular is the resulting topology, thus
yielding low ICnorm values.

The Clustering Coefficient can be seen as a special case
of motifs, i.e. sub-graphs recurring within a network with
a higher than expected frequency [15]. Their importance
resides in the fact that they can be understood as basic
building blocks, each one of them associated with spe-
cific functions within the global system [21]. The main
difference with complete triangles is that motifs are not

necessarily symmetrics nor complete, thus one expects a
lower contribution toward creating regular structures in
the adjacency matrix. By analyzing the ICnorm in random
networks as a function of the frequency of appearance of
different 3-nodes motifs, a significant correlaction can be
found with motifs 3 (ρ = −0.7970, r2 = 0.6194), 5 (ρ =
−0.7557, r2 = 0.5711), 7 (ρ = −0.7888, r2 = 0.6222) and
9 (ρ = −0.7415, r2 = 0.5498) —for the enumeration of
3-nodes motifs, refer to fig. 1B of ref. [15].

Application to real networks. – In summary, a low
value of ICnorm indicates the presence of some kind of
meso-scale regularity, although it gives no information
about the specific type of structure detected; in other
words, one knows that a structure is present, but not if
it is a modular structure, a bipartite one, etc. Thus, it
is natural to complement the information yielded by IC
with other common topological metrics. In order to stress
this point, fig. 4 presents four different phenospaces of 55
real networks, covering social, biological and technolog-
ical systems [22–29]. Each network is represented as a
point in the plane, whose coordinates are given by the
ICnorm and by the value of a second topological metric,
drawn from the following: ZScore of the maximum node
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Fig. 5: (Color online) Modularity and ICnorm in weighted functional brain networks. Evolution of the modularity (left) and of
the normalized Information Content (right) for three human brain functional networks, as a function of the applied threshold.
Dotted gray lines represent the corresponding link density (right axes).

degree, slope of the exponential fit of the degree distribu-
tion, modularity (as calculated with Blondel’s community
detection algorithm [30]) and clustering coefficient. If the
pair of topological metrics considered in each phenospace
were equivalent, one should expect all points to lie on a
line. On the contrary, the four panels of fig. 4 display a
large variety of relationships. First, an inverse relation-
ship between ICnorm, on the one hand, and ZScore of the
maximum node degree (top left panel) and the slope of
the exponential fit (top right panel) on the other, can be
appreciated; second, modularity and clustering coefficient
yield graphs in which points cover the whole plane, indi-
cating that the information they provide is not redundant.
Thus, a low Information Content cannot immediately be
associated to a given meso-scale feature, but it should be
complemented with different phenospace analyses. It is
also worth noticing the different behaviors corresponding
to the different types of networks: social networks (red
circles) cover the whole parameter space, while biologi-
cal networks (black squares) seem to be bounded inside
specific regions.

Information Content can also be used to assess the pres-
ence of different structures in weighted networks, by apply-
ing different thresholds and track how the ICnorm evolves.
As a test case, here we consider three brain functional net-
works [31], obtained through magneto-encephalographic
(MEG) recordings of three healthy subjects performing a
Sternberg’s letter-probe task. For each subject, a weighted
clique of size 148×148 was computed using the MEG time
series, where the weights are given by the correlation be-
tween each pair of sensors as calculated by means of a
Synchronization Likelihood (SL) algorithm [32].

Figure 5 reports the evolution of the modularity and
of the normalized Information Content for the three sub-
jects as a function of the applied threshold. While the
former has a monotonous behavior (except for high thresh-
olds, where the reduced amount of links results in strong
fluctuations), the ICnorm presents a clear maximum corre-
sponding to a threshold of 0.2–0.25. This region of reduced
topological regularity points to a change in the structure of
the networks, which is consistent with the varying fractal

topology of the human brain at different synchronization
thresholds [33,34].

Conclusions. – In conclusion, this letter reports on
the definition of a new metric designed to assess the pres-
ence of regular meso-scale structures in complex networks
—a MATLAB c⃝ implementation of the IC algorithm
can be found in [35]. While other metrics, e.g. mod-
ularity, are defined a posteriori, that is the community
structure should be detected before the calculation of the
modularity of a network, the Information Content can
be obtained directly from the adjacency matrix. Fur-
thermore, it is an exact metric, not requiring any op-
timization process whose result depends on the specific
algorithm used. Finally, it enables the simultaneous as-
sessment of different meso-scale structures, providing in-
formation complementary to standard measures. For all
this, the Information Content is expected to provide im-
portant benefits in tasks requiring the systematic and au-
tomatized analysis of large sets of networks, as in the case
of classification tasks, for instance when a network repre-
sentation is used to assess the health status of different
patients [36–38].
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[14] Guimerá R., Sales-Pardo M. and Amaral L. A. N.,

Phys. Rev. E, 76 (2007) 036102.
[15] Milo R., Shen-Orr S., Itzkovitz S., Kashtan N.,

Chklovskii D. and Alon U., Science, 298 (2002) 824.
[16] Holme P., Phys. Rev. E, 72 (2005) 046111.
[17] Radicchi F., Ramasco J. J., Barrat A. and

Fortunato S., Phys. Rev. Lett., 101 (2008) 148701.
[18] Rozenfeld H. D., Song C. and Makse H. A., Phys.

Rev. Lett., 104 (2010) 025701.
[19] Shannon C. E., Bell Syst. Tech. J., 28 (1949) 656.
[20] Watts D. J. and Strogatz S. H., Nature, 393 (1998)

440.
[21] Shen-Orr S. S., Milo R., Mangan S. and Alon U.,

Nat. Genet., 31 (2002) 64.
[22] Killworth B. and Bernard H., Hum. Organ., 35

(1976) 269.
[23] Hummon N. P. and Doreian P., Soc. Netw., 11 (1989)

39.
[24] Wasserman S. and Faust K., Social Network Analysis:

Methods and Applications (Cambridge University Press)
1994.

[25] Batagelj V. and Mrvar A., Pajek data sets, http://
pajek.imfm.si/doku.php?id=data:index (2003).

[26] Sun S., Ling L., Zhang N., Li G. and Chen R., Nucleic
Acids Res., 31 (2003) 2443.

[27] Lusseau D., Proc. R. Soc. London B, 270 (2003) S186.
[28] Melián C. J. and Bascompte J., Ecology, 85 (2004)

352.
[29] Opsahl T., Agneessens F. and Skvoretz J., Soc.

Netw., 3 (2010) 245.
[30] Blondel V. D., Guillaume J. L., Lambiotte R. and

Lefebvre E., J. Stat. Mech., 2008 (2008) P10008.
[31] Bullmore E. and Sporns O., Nat. Rev. Neurosci., 10

(2009) 186.
[32] Stam C. J. and van Dijk B. W., Physica D, 163 (2002)

236.
[33] Bassett D. S., Meyer-Lindenberg A., Achard S.,

Duke T. and Bullmore E., Proc. Natl. Acad. Sci.
U.S.A., 103 (2006) 19518.

[34] Gallosa L. K., Makse H. A. and Sigman M., Proc.
Natl. Acad. Sci. U.S.A., 109 (2012) 2825.

[35] http://www.mzanin.com/IC/index.html (2014).
[36] Zanin M. and Boccaletti S., Chaos, 21 (2011) 033103.
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